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Abstract

In this paper, we explore the performance of gang
scheduling on a cluster using the Quadrics interconnection
network. In such a cluster, the scheduler can take advan-
tage of this network’s unique capabilities, including a net-
work interface card-based processor and memory and effi-
cient user-level communication libraries. We developed a
micro-benchmark to test the scheduler’s performance un-
der various aspects of parallel job workloads: memory us-
age, bandwidth and latency-bound communication, number
of processes, timeslice quantum, and multiprogramming lev-
els. Our experiments show that the gang scheduler performs
relatively well under most workload conditions, is largely in-
sensitive to the number of concurrent jobs in the system and
scales almost linearly with number of nodes. On the other
hand, the scheduler is very sensitive to the timeslice quan-
tum, and values under 30 seconds can incur large overheads
and fairness problems.

Keywords: Gang Scheduling, Performance Evaluation,
Parallel Architectures, Quadrics interconnect.

1 Introduction

Gang scheduling is an efficient way to multiprogram fre-
quently communicating processes on parallel supercomput-
ers [1, 11]. Similar to time-sharing in uniprocessor systems,
gang scheduling offers many advantages for job and system
efficiency. The scheduler’s ability to preempt jobs allows
higher-utilization of the system in the following ways:

� The system’s responsiveness interactive and high-
priority jobs can be very high, even when the system
is being heavily used.

�
The work was supported by the U.S. Department of Energy through
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� Jobs requiring a large number of processors do not have
to wait for the completion of other jobs before being
launched. Furthermore, once such a job is running, it
does not monopolize resources; other jobs can still be
executed.

� Unused resources can be used by low-priority jobs and
reallocated to higher-priority jobs when needed.

� The system can maintain a high utilization rate under
varying workloads.

On the other hand, it has been argued that gang scheduling
can incur a relatively high overhead because of the effect the
context switch on the computing nodes.

This overhead is caused by resource sharing between mul-
tiple jobs and spans several dimensions. One dimension is
the cache memory and translation look-aside buffer (TLB):
context switch between processes causes a cold start which
initiates the loading of the new process’s working set and the
eviction of the old working set.

The overflow of the physical memory into the virtual
memory usually causes a severe performance penalty. In
fact, the access time of a page swapped to disk can be or-
ders of magnitude slower than the access time of the same
page in the main memory.

Another important dimension is the interface between
the processing node and the network. The advent of high-
performance network interface cards (NICs) that include
processors and memory enable user-level messaging pro-
tocols, that minimize the communication delay removing
the operating system from the communication protocols
[6, 7, 8, 18, 19]. These protocols require dedicated buffers in
the network interface that are usually mapped in the virtual
address space of the user processes. They may also require
communication buffers that must be “pinned” in the main
memory to perform the inter-node communication. With
gang scheduling, all these buffers must be properly managed
between context switches. Finally, the context switch be-



tween jobs must take care of the packets in transit inside the
network.

In the SHARE scheduler of the IBM SP2[4], the com-
munication buffers are saved and restored at every context
switch to minimize the amount of pinned memory. Process-
ing nodes achieve coordination with synchronized clocks.
The nodes do not interact through explicit synchronization
and are not coordinated by a central controller. In particular,
the network is not flushed during a context switch; therefore,
a node may receive a packet that is addressed to a process
that is no longer running. To address this problem, the CM-
5[10], ParPar[3], and SCore-D[5] propose network flushing
mechanisms.

In the CM-5, during a context switch, all packets are
“dropped down” to the closest node in the fat-tree network
and stored temporarily. When the job is rescheduled, these
packets are reinjected to complete their trip.

In the ParPar scheduler, the master daemon coordinates
the context switch by sending synchronization messages to
the worker nodes. Upon receiving the message, a partner
daemon in the worker node suspends the running process
and schedules the new process. In order to flush the network,
each network interface broadcasts a halt message to all other
network interfaces. Given that the communication queues in
the network interface are managed in first in-first out order
and the network delivers packets using a single determinis-
tic path between each pair of nodes, this protocol guaran-
tees that no packets belonging to the previous timeslice will
be received after the halt message. Ref. [2] shows that the
buffers in the network interface are often under utilized dur-
ing the context switch, so the context switch overhead can
be reduced by saving only the packets that are in the buffer
rather than in the whole set of buffers.

The SCore-D cluster does not need to send special control
messages because each single packet is explicitly ACKed or
NACKed by the destination. Each node simply stops trans-
mitting and waits until all its outstanding packets are ac-
knowledged.

In this paper we analyze the overhead associated with the
gang scheduler of the Quadrics network (QsNET).1 The Qs-
NET is of particular importance to the Los Alamos National
Laboratory because it is to be used as the interconnect for
the 30-teraops ASCI-Q machine by Compaq.2 This paper’s
contribution lies in a systematic study of various properties
of the Quadrics gang scheduler that can be used to compare
it to other schedulers in terms of performance, overhead, and
scalability.

The rest of this paper is organized as follows. We first
describe the features of a Quadrics-based cluster in Section
2. In Section 3, we provide the details of the experimental
methodology. Section 4 presents our experimental results

1http://www.quadrics.com

2http://www.compaq.com/hpc
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Figure 1. Elan functional units

and analysis. Finally, we conclude and outline future work
in Section 5.

2 Overview of QsNET and RMS

2.1 Hardware

QsNET [12] consists of two building blocks: a pro-
grammable network interface called Elan [13] and a low-
latency, high-bandwidth communication switch called Elite
[14]. Elites can be interconnected in a fat-tree topology [9].
The network has several layers of communication libraries
that provide trade-offs between performance and ease of use.
Other important features are hardware support for collective
communication patterns and fault tolerance.

The Elan network interface links the high-performance,
multi stage Quadrics network to a processing node contain-
ing one or more processing elements (PEs). In addition to
generating and accepting packets to and from the network,
the Elan provides substantial local processing power as well
as 64 MB of SDRAM to implement high-level message-
passing protocols such as MPI[17]. Messages are chunked
by the DMA engine in packets of 320 bytes which are deliv-
ered in-order. The internal functional structure of the Elan is
shown in Figure 1.

The Elan supports four independent microcode threads:
(1) Inputter thread; handles input transactions from the net-
work. (2) Direct memory access (DMA) thread; gener-
ates DMA packets to be written to the network, prioritizes
outstanding DMAs, and time-slices large DMAs so that
small DMAs are not adversely blocked. (3) The processor-
scheduling thread prioritizes and controls the scheduling and
descheduling of the thread processor. (4) The command-
processor thread handles operations requested by the host
(i.e., “command”) processor at user level.



Processes in a parallel job can communicate with each
other through an abstraction of distributed virtual shared
memory (DVSM). Each process is allocated a virtual pro-
cess ID (VPID) and can map a portion of its address space
into the Elan. These address spaces, taken in combination,
constitute an DVSM. Remote memory (i.e., memory on an-
other processing node) can be addressed by a combination
of a VPID and a virtual address. The SDRAM in the Elan
can be used to keep the virtual-to-physical translation and
routing tables of several jobs. Thus, in the presence of a con-
text switch, there is no need to flush the Elan communication
buffers and the system data structures.

2.2 Software

The resource management system (RMS) integrates var-
ious components of the QsNET [15, 16]. An RMS sys-
tem connects a set of computers to a management network
and to a Quadrics data network to provide high-performance
user-space communication. To provide access to the RMS
system, nodes can be connected to an external LAN. Com-
puting nodes that are used for the parallel applications are
accessed via RMS and can optionally have user logins dis-
abled. Nodes can be divided into mutually exclusive parti-
tions so that each partition can have different properties and
policies for resource allocation, and several configurations
can be defined and switched to allow a different set of prop-
erties per partition (e.g., different configurations can exist for
day and night operations, allowing larger programs to run at
night). One node (which can be separate from the comput-
ing nodes) is designated as a management node and holds
the RMS database, which enables interfacing to the system
using standard SQL queries.

The RMS provides a single point of interface to the sys-
tem for resource management. It includes facilities for gath-
ering information on resources (monitoring, auditing, ac-
counting, fault diagnosis, and statistical data collection) and
for resource handling (CPU allocation, access control, par-
allel jobs support, and execution, and scheduling). RMS is
implemented as a set of UNIX commands and daemons that
communicate using socket daemons and access the database
for storing or retrieving all the system details. Of the set
of daemons provided by RMS, two are concerned primar-
ily with parallel job launching and scheduling. The Parti-
tion Manager (pmanager) is a per-partition daemon that
runs on the management node. It handles requests for job
launching and termination, checks the privileges and prior-
ities allowed for each job, manages and allocates resources
within its partition, and schedules the jobs. The RMS Dae-
mon (rmsd) runs on each computing node in the system. It
loads and runs user processes (using the application loader
rmsloader), creates communication contexts for the ap-
plication, delivers signals, and monitors resource usage and
system performance.

Figure 2 shows how the system runs an eight-process job
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Figure 2. An eight-process program on four
nodes

on four two-way SMP nodes. First, a user invokes a pro-
gram called prun on the management node to launch her
program, which in turn asks pmanager to allocate PEs and
start the job on them. The pmanager notifies the rmsd
processes on the allocated nodes to invoke an rmsloader
process with the user’s program; rmsloader also directs
the stdout and stderr streams of the program to prun,
which forwards it to the controlling terminal or output files.

The RMS scheduler allocates boxes (N nodes with a fixed
number of PEs per node) to jobs so that they may take ad-
vantage of the hardware support of the QsNet for broadcast
and barrier operations that operate over a contiguous range
of network addresses.

Each partition can have its own scheduling policy and pa-
rameters (such as timeslice interval, time limit, etc.). The
scheduling algorithm used can be one of the following:

1. Gang scheduling of parallel programs, in which all the
processes in a program are scheduled and descheduled
together.

2. Regular UNIX scheduling with the addition of simple
load balancing.

3. Batch scheduling, in which the use of resources is con-
trolled by a batch system.

When pmanager decides to suspend a running program or
run another (either because of timeslice expiration, insertion
of a higher-priority job to the system, or user command),
it sends an appropriate command to the rmsd processes on
the affected nodes through their sockets channel. Thus, the
traffic density of the control messages is not determined by
the number of jobs but rather by the timeslice value.

3 Experimental Methodology

3.1 Goals

We are primarily concerned with the following properties
of the RMS gang scheduler:

1. How it scales as the multiprogramming level (MPL) in-
creases. We would like to quantify the overhead that is
introduced by the scheduler.



2. How it scales as the number of nodes increases.

3. How different memory requirements of the applications
affect coscheduling performance.

4. How the scheduler handles different communication
granularities of applications. What effect, if any, a con-
text switch has on the network and the communication
buffers of the network interface.

5. What the effect of the timeslice length is. Which val-
ues offer a good trade-off between response time and
scheduling overhead.

3.2 Experimental Framework

We have designed a micro benchmark to test several as-
pects of the gang scheduler. Our benchmark is structured as
a program that loops over an array, reads a value from one
entry, performs a simple floating-point calculation, writes
the result in another entry of the same array, and copies a
subset of these results on another array which serves as the
communication buffer. The stride for traversing the array is
a constant large prime. At a specified frequency the pro-
gram performs a total exchange with its peer processes (us-
ing MPI_Alltoall [17]). In a total exchange of � bytes (also
known as personalized all-to-all communication), each of the� processes sends a distinct message of ��� � bytes to every
other process. An external script launches this program with
different parameters according to a predefined sequence and
with several instances to create the desired MPL. In the ex-
periments we varied the following parameters:

� Total computation cycles, number of total exchanges
and communication buffer size. These three factors de-
termine the computation/communication granularity.

� Number of processes per job.

� multiprogramming level.

� Size of memory array for read/write operations.

We divide the run time of each job by the MPL. Job slow-
down is compared with the basic case, in which a program,
does not communicate, uses a single-byte array and runs on
one PE only, with no other jobs.

For our measurements we used a cluster of 16 dual-
processor nodes running Linux 2.4.0. Each node is equipped
with two 733-MHz Pentium-III processors, a 66-MHz PCI
bus, 1 GB of ECC memory, and QsNET and Ethernet con-
nections. The first node is used as a management node for
RMS.
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Figure 3. Effect of array size

3.3 Workload

We made several assumptions on the workload for this
study. First, when the MPL is greater than 1, we launch all
the jobs together. The amount of computation of each job
is 100 million read/modify/write cycles, which is approxi-
mately 50 seconds of run time. We found this granularity to
be large enough to make the experimental sample relatively
stable and small enough to make large experiments practi-
cal. Still, some variability in the results exists. This vari-
ability stems from various system parameters that are diffi-
cult to control and add noise to the experiments. Such pa-
rameters include small architectural differences between the
nodes, temporal effects such as varying load of Linux and
RMS daemons, and local scheduling decisions that are done
by Linux on each SMP and affect cache affinity and synchro-
nization issues. We used the following default values for all
other parameters (unless otherwise indicated for individual
experiment):

1. Read/write array size of 1 MB, with no separation be-
tween read and write locations.

2. 1,024 total exchanges, with 4,096-bytes of total buffer
size. This represents a granularity of a total exchange
every 50 ms of computation.

3. Sixteen processes running on 8 nodes.

4. Timeslices of 10 and 30 seconds.

4 Experimental Results

4.1 Effect of Memory Usage

Figure 3 shows the slowdown of gang scheduling multi-
ple jobs on a single processing node with a timeslice of 30
seconds. We can see that the overhead is approximately 10%
more than the basic case when a single job is run in dedicated
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mode. This indicates that process context switch penalty is
contained. It is worth noting that our benchmark has a de-
liberately poor data reuse (because we use a large stride for
scanning the array) so that cache concerns have no real ef-
fect on the results. The picture changes for workloads that
do not fit in the main memory. For example, running two
processes with a memory footprint of 512 MB each on one
machine (thus exhausting the machine’s physical memory)
results in a slowdown of 30. The same applications using
620 MB each yields a slowdown of more than 200.

4.2 Effect of Timeslice Quantum

Figure 4 shows the effect of the timeslice on the run time.
We would expect a decrease in run time as the timeslice in-
creases, due to a lower amount of context switches and as-
sociated overhead. This can be seen in the graph for times-
lice values larger than 10 seconds, although the responsive-
ness of small and interactive jobs can be low for such times-
lices. Counter intuitively, run time is actually better when the
timeslice is smaller than 10 seconds. This occurs because the
pmanager process cannot handle this rate of control mes-
sages, and skips several context switches. This results in
poor fairness and starvation, which is demonstrated in a very
high variation of the jobs’ run time. In the case of 4 jobs and
a timeslice of 1 second, we measured a standard deviation of
65 when the average run time is 131 seconds. This in turn
also affects adversely the responsiveness of starved jobs.

From our measurements it can be seen that the gang
scheduler requires a timeslice larger than 30 seconds to op-
erate effectively.

4.3 Effect of Communication

To measure the effect of communication on the gang
scheduler, we use both latency-bound and bandwidth-bound
communication patterns. For the former, we set the size of
the communication buffer to one byte (the time for a single-
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byte total exchange is dominated by the communication la-
tency) and vary the number of total exchanges to the point
of system saturation. For the latter, we fix the number of to-
tal exchanges to 1,024 and increase the buffer size up to 128
KB, thus fixing the latency and increasing the bandwidth re-
quirement. In both cases, we stress the scheduler further by
using a relatively small timeslice value of 10 seconds3.

Figure 5 shows our results with the latency-bound com-
munication patterns. The difference between the slowdown
curves for each MPL is fairly constant, thus implying that the
gang scheduler is relatively insensitive to the number of total
exchanges. In absolute terms, the slowdown curves are rel-
atively flat up to 1M total exchanges (which represents one
total exchange for every 50 � sec of computation). This sud-
den and severe slowdown is primarily due to the fact that the
total communication time is now the same order of magni-

3As discussed in Section 4.2, this value represents the smallest timeslice
that still guarantees fairness.
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tude as the timeslice.
Figure 6 presents the results with the bandwidth-bound

access patterns. As in Figure 5, the relative differences
between the curves remains nearly constant, indicating the
gang scheduler’s insensitivity to the bandwidth requirements
of the benchmark. This behavior is due to the ability of the
Elan NIC to store multiple network contexts, as outlined in
Section 2.1, thus allowing lightweight context switches and
eliminating the need for a full network clean-up. For buffer
sizes larger than 32 KB, the Elan offers a degree of over-
lap between the computation and communication of distinct
jobs.

4.4 Effect of Multiprogramming Level

Gang scheduling provides the advantage that the amount
of control information exchanged between the resource man-
ager and the workers is unaffected by the number of con-
current jobs. The determining factor is actually the times-
lice value as a constant amount of information is exchanged
every timeslice, irrespective of the number of jobs. There-
fore, we expect that the cost of adding more jobs to the gang
scheduler would be relatively low. Figure 7 verifies our intu-
ition by showing that adding more jobs after the second in-
curs little additional scheduling overhead. Furthermore, the
figure shows that the scheduling overhead, and hence slow-
down, depends on the timeslice quantum.

4.5 Node Scalability

In this section, we study the scalability of the gang sched-
uler with respect to the number of nodes in the system.
Figure 8 shows the results of running six different tests of a
continuous range of nodes up to 15 (with each node consist-
ing of two PEs). As expected from the results in Section 4,
the scheduler performs erratically when the timeslice quan-
tum is small (i.e., 10 seconds) and the MPL is two or four,
thus creating fairness problems. These curves also exhibit
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steep growth from one to seven nodes with moderate growth
thereafter. However, the overall slowdown reaches values
over 250% higher than the base case, thus making the choice
of such a timeslice unattractive.

When the timeslice is 30 seconds for MPL two and MPL
four, the slowdown initially grows rapidly (~40% clip) but
at a more moderate rate than when the timeslice is 10. Be-
yond seven nodes, the growth rate moderates further, 3% for
MPL 2 and 9% for MPL 4. These results indicate that for
a larger number of nodes, the overhead associated with con-
text switches scales gracefully and is likely due to the fact
that context switches are not penalized by the NIC, so the in-
crease in traffic does not aggravate the context-switch over-
head.

For an MPL of one, fairness is not an issue, and the times-
lice has no effect. In fact, Figure 8 shows that the curves for
an MPL of one are virtually identical, differing only because
of the inherent variability of the test system (Section 3.3).
These curves show a very small but gradual growth in the
slowdown from 1.2 to 1.3 due to the increasing cost of the
MPI_AlltoAll() operation as the number of nodes increases.

5 Conclusions

This paper described an experimental study of the
Quadrics gang scheduler. We demonstrated that the sched-
uler is relatively insensitive to the communication granular-
ity in terms of latency and bandwidth and may actually im-
prove the overall run time of bandwidth-hungry programs
that are coscheduled by overlapping computation and com-
munication. Further, we showed that the scheduler is also
insensitive to the amount of memory used but only as long as
the physical memory of the machine is not exhausted. With
respect to the scalability of the scheduler, it performed quite
well for up to 15 nodes (or 30 PEs) and an MPL of 8.

On the negative side, the scheduler is very sensitive to the
timeslice quantum and can perform poorly if a small value
is chosen. For time slices under 30 seconds, performance



degradation of up to 90% can be observed in some cases;
for values of 5 to 10 seconds, severe fairness and starvation
problems occur, which have an adverse effect on system re-
sponsiveness. On the other hand, using larger values for the
timeslice has implications on responsiveness, particularly for
short or interactive jobs.

6 Future Work

Our future work encompasses three directions. First, we
will ascertain the suitability of the Quadrics gang sched-
uler for real-world applications. Second, we will examine
the performance of the gang scheduler using more realistic
workloads (both in simulation and on our Quadrics cluster).
The simple workload described in this paper does not launch
jobs according to a workload model or a real workload trace,
taking into account issues such as day/night/weekend peri-
ods, development issues, etc. Lastly, we plan to measure the
scheduler’s performance on larger-scale machines so that a
better understanding of its scalability properties can be ob-
tained.
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